我们的食品偏好指导我们的食物选择,反过来影响我们的个人健康和社交生活。在本文中,我们采用了一种方法,使用OWL2中表达的域本体进行支持,以支持正规主义CP-Net中的偏好的获取和表示。具体而言,我们展示了域本体论的构建和问卷设计来获取和代表偏好。偏好的收购和代表在大学食堂的领域实施。我们在这项初步工作中的主要贡献是获取偏好,并优选地通过本体中所代表的域知识来获取偏好。
translated by 谷歌翻译
考虑基于AI和ML的决策对这些新兴技术的安全和可接受的使用的决策的社会和道德后果至关重要。公平,特别是保证ML决定不会导致对个人或少数群体的歧视。使用因果关系,可以更好地实现和衡量可靠的公平/歧视,从而更好地实现了敏感属性(例如性别,种族,宗教等)之间的因果关系,仅仅是仅仅是关联,例如性别,种族,宗教等(例如,雇用工作,贷款授予等) )。然而,对因果关系解决公平性的最大障碍是因果模型的不可用(通常表示为因果图)。文献中现有的因果关系方法并不能解决此问题,并假设可获得因果模型。在本文中,我们没有做出这样的假设,并且我们回顾了从可观察数据中发现因果关系的主要算法。这项研究的重点是因果发现及其对公平性的影响。特别是,我们展示了不同的因果发现方法如何导致不同的因果模型,最重要的是,即使因果模型之间的轻微差异如何对公平/歧视结论产生重大影响。通过使用合成和标准公平基准数据集的经验分析来巩固这些结果。这项研究的主要目标是强调因果关系使用因果关系适当解决公平性的因果发现步骤的重要性。
translated by 谷歌翻译
在本文中,我们介绍了一项关于基于深度学习的方法,用于多面体编译器中的自动代码优化。该提出的技术探讨了仿射和非抗逆环转换的组合,以找到最小化给定程序的执行时间的转换序列。这种探索是由一个基于深度学习的成本模型指导的,该模型评估了每个转换序列将产生的速度。初步结果表明,所提出的技术在最先进的多面体编译器(Pluto)上实现了2.35倍的几何速度。
translated by 谷歌翻译
机器学习算法通常会对少数族裔和代表性不足的子人群产生偏见的结果/预测。因此,公平是基于机器学习技术的大规模应用的重要要求。最常用的公平概念(例如统计平等,均衡的几率,预测奇偶等)是观察性的,并且依赖于变量之间的仅相关性。在统计异常(例如辛普森或伯克森的悖论)的情况下,这些概念无法识别偏差。基于因果关系的公平概念(例如反事实公平,无歧视歧视等)对此类异常免疫,因此更可靠地评估公平性。但是,基于因果关系的公平概念的问题是,它们是根据数量(例如因果,反事实和特定于路径特定效应)定义的,这些概念并非总是可衡量的。这被称为可识别性问题,是因果推理文献中大量工作的主题。本文是对机器学习公平性特别相关的主要可识别性结果的汇编。使用大量示例和因果图说明了结果。公平研究人员,从业人员和政策制定者正在考虑使用基于因果关系的公平概念,并说明主要可识别性结果,这本文特别感兴趣。
translated by 谷歌翻译
解决公平问题对于安全使用机器学习算法来支持对人们的生活产生关键影响的决策,例如雇用工作,儿童虐待,疾病诊断,贷款授予等。过去十年,例如统计奇偶校验和均衡的赔率。然而,最新的公平概念是基于因果关系的,反映了现在广泛接受的想法,即使用因果关系对于适当解决公平问题是必要的。本文研究了基于因果关系的公平概念的详尽清单,并研究了其在现实情况下的适用性。由于大多数基于因果关系的公平概念都是根据不可观察的数量(例如干预措施和反事实)来定义的,因此它们在实践中的部署需要使用观察数据来计算或估计这些数量。本文提供了有关从观察数据(包括可识别性(Pearl的SCM框架))和估计(潜在结果框架)中推断出因果量的不同方法的全面报告。该调查论文的主要贡献是(1)指南,旨在在特定的现实情况下帮助选择合适的公平概念,以及(2)根据Pearl的因果关系阶梯的公平概念的排名,表明它很难部署。实践中的每个概念。
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译